Disjunctive Rado numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disjunctive Rado numbers

If L1 and L2 are linear equations, then the disjunctive Rado number of the set {L1, L2} is the least integer n, provided that it exists, such that for every 2-coloring of the set {1, 2, . . . , n} there exists a monochromatic solution to either L1 or L2. If such an integer n does not exist, then the disjunctive Rado number is infinite. In this paper, it is shown that for all integers a 1 and b ...

متن کامل

On Erdös-Rado Numbers

In this paper new proofs of the Canonical Ramsey Theorem, which originally has been proved by ErdSs and Rado, are given. These yield improvements over the known bounds for the arising Erd6s-Rado numbers ER(k; l), where the numbers ER(k; l) are defined as the least positive integer n such that for every partition of the k-element subsets of a totally ordered n-element set X into an arbitrary num...

متن کامل

Better Bounds on Rado Numbers

This was first proven by van der Warden [6]. See the books by Graham, Rothchild, and Spencer [3], Landman and Robertson [4] or the free on-line book of Gasarch, Kruskal, Parrish [1] for the proof in English. This proof gives enormous upper bounds on the numbers W (k, c) that are not primitive recursive. Shelah [5] gave an alternative proof that yields primitive recursive upper bounds. All of th...

متن کامل

Two Color Off-diagonal Rado-type Numbers

We show that for any two linear homogeneous equations E0, E1, each with at least three variables and coefficients not all the same sign, any 2-coloring of Z+ admits monochromatic solutions of color 0 to E0 or monochromatic solutions of color 1 to E1. We define the 2-color off-diagonal Rado number RR(E0, E1) to be the smallest N such that [1, N ] must admit such solutions. We determine a lower b...

متن کامل

Disjunctive !-Words and Real Numbers

An !-word p over a nite alphabet is called disjunctive if every nite word over occurs as a subword in p. A real number is called disjunctive to base a if it has a disjunctive a-adic expansion. For every pair of integers a; b 2 such that there exist numbers disjunctive to base a but not to base b we explicitly construct very simple examples of such numbers. General versions of the following resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2005

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2005.02.007